203 research outputs found

    Sustainability, natural and organic cosmetics: consumer, products, efficacy, toxicological and regulatory considerations

    Get PDF
    The interest in sustainable products has increased along the years, since the choice of products, packaging and production processes have a great impact on the environment. These products are classified by regulatory agencies in different categories, aggregating advantages to the product and increasing the demand by consumers. However, there is no harmonization in guidelines of these certifying agencies and each cosmetic industry formulates their product and packaging in a more rational way, which causes less damage to the environment. Many cosmetic products have in their formulation natural products that perform a specific biological function, but these products should be evaluated on efficacy and toxicological aspects. The aim of this article is to approach sustainability, natural and organic cosmetics, considering the consumer and the efficacy, toxicological and regulatory aspects.O interesse por produtos sustentáveis tem aumentado ao longo dos anos, desde a escolha dos produtos, embalagens e processos de produção tendo um grande impacto sobre o meio ambiente. Estes produtos são classificados por agências reguladoras em diferentes categorias, agregando vantagens ao produto e aumentando a demanda por parte dos consumidores. No entanto, não existe uma harmonização nas diretrizes destes órgãos de certificação e cada indústria cosmética formula seu produto e embalagem de uma forma mais racional, levando a menos danos ao meio ambiente. Muitos produtos cosméticos têm produtos naturais na formulação que executam uma função biológica específica, porém estes produtos devem ser avaliados quanto a sua eficácia e toxicidade. O objetivo deste artigo é abordar a sustentabilidade, cosméticos naturais e orgânicos, considerando os aspectos regulatórios, do consumidor e os aspectos de eficácia e toxicológicos

    Piperine: Chemical, biological and nanotechnological applications

    Get PDF
    Piperine (PIP) is an alkaloid present in several species of piper, mainly Piper nigrum Linn. and P. longum, among other species. The present article provides a comprehensive review of PIP research in the last years concerning its chemical properties, synthesis, absorption, metabolism, bioavailability and toxicity. The reviewed PIP literature has shown many pharmacological properties, such as antidiabetic, antidiarrheal, antioxidant, antibacterial, and antiparasitic activity of PIP. However, its low solubility and absorption make its application challenging. This review also includes advances in the development of nanosystems containing PIP, including liposomes, micelles, metal nanoparticles, nanofibers, polymeric nanoparticles, and solid-lipid nanoparticles. Finally, we discuss different in vitro and in vivo studies to evaluate the biological activity of this drug, as well as some methods for the synthesis of nanosystems and their physical characteristics

    Eco-friendly and miniaturized analytical method for quantification of Rifaximin in tablets

    Get PDF
    Rifaximin is an oral antimicrobial, semisynthetic and nonabsorbable with minimal adverse effects that act locally in the gastrointestinal tract. Rifaximin does not have standardized methods of analysis for the tablets evaluation in official compendiums. The objective of this study is to develop and validate an analytical method for the quantification of rifaximin in tablets by spectrophotometry in the ultraviolet region, aiming at a miniaturized and eco-friendly method. The method was performed using 700 μL cuvette and purified water: ethanol (4:1, v/v) as diluent. The wavelength used was 233 nm and the range of concentrations was 4-14 µg mL-1. It was linear with correlation coefficient greater than 0.9999, precise with relative standard deviation equal 0.80%, 1.19% and 1.19% for intraday, interday and interanalyst precision, respectively, exact with average recovery of 100.56%, selective against the presence of interferents such as impuruties, matrix compouds and solvents used and robust with the change of ethyl alcohol brand and proportion used as diluent. The method developed presents advantages as, minimum waste generation, reduction in amount of sample, standard and solvents used and reduction in time of analysis. Then this method can be used in rotine analysis of rifaximin tablets as a alternative method, reliable, effective, really fast, low cost, eco-friendly and miniaturized. This study contemplates a current and innovative topic which is extremely important for the area of Quality Control of drugs and medicines and for the sustainable Green Analytical Chemistry

    Green tea glycolic extract-loaded liquid crystal systems: development, characterization and microbiological control

    Get PDF
    Liquid crystal systems (LCSs) have interesting cosmetic applications because of their ability to increase the therapeutic efficiency and solubility of active ingredients. The aim of the present research was to develop green tea glycolic extract-loaded LCSs, to characterize and to perform microbiological control. The ternary phase diagram was constructed using polysorbate 20, silicone glycol copolymer (SGC) - DC 193(r), and distilled water with 1.5% glycolic green tea extract. The systems were characterized by polarized light microscopy. Formulations selected were characterized as transparent viscous systems and transparent liquid system indicated mesophases lamellar structure. The results of the microbiological analysis of mesophilic aerobic microorganisms (bacteria and fungi) revealed that the above formulation showed a biologic loa

    Skin delivery and in vitro biological evaluation of trans-resveratrol-loaded solid lipid nanoparticles for skin disorder therapies

    Get PDF
    The aim of this study was to evaluate the skin delivery and in vitro biological activity of trans-resveratrol (RES)-loaded solid lipid nanoparticles (SLNs). The SLNs were composed of stearic acid, poloxamer 407, soy phosphatidylcholine (SPC), an aqueous phase and 0.1% RES. The particle size, polydispersity index (PdI) and zeta potential were analyzed by dynamic light scattering (DLS). The SLNs were analyzed by scanning electron microscopy (SEM-FEG) and differential scanning calorimetry (DSC). In vitro RES-SLN skin permeation/retention assays were conducted, and their tyrosinase inhibitory activity was evaluated. An MTT reduction assay was performed on HaCat keratinocytes to determine in vitro cytotoxicity. The formulations had average diameter lower than 200 nm, the addition of SPC promoted increases in PdI in the RES-SLNs, but decreases PdI in the RES-free SLNs and the formulations exhibited zeta potentials smaller than −3 mV. The DSC analysis of the SLNs showed no endothermic peak attributable to RES. Microscopic analysis suggests that the materials formed had nanometric size distribution. Up to 45% of the RES permeated through the skin after 24 h. The RES-loaded SLNs were more effective than kojic acid at inhibiting tyrosinase and proved to be non-toxic in HaCat keratinocytes. The results suggest that the investigated RES-loaded SLNs have potential use in skin disorder therapies21CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçãosem informação2011/16888-5; 2012/19568-4; 2013/21500-

    Skin Delivery And In Vitro Biological Evaluation Of Trans-resveratrol-loaded Solid Lipid Nanoparticles For Skin Disorder Therapies.

    Get PDF
    The aim of this study was to evaluate the skin delivery and in vitro biological activity of trans-resveratrol (RES)-loaded solid lipid nanoparticles (SLNs). The SLNs were composed of stearic acid, poloxamer 407, soy phosphatidylcholine (SPC), an aqueous phase and 0.1% RES. The particle size, polydispersity index (PdI) and zeta potential were analyzed by dynamic light scattering (DLS). The SLNs were analyzed by scanning electron microscopy (SEM-FEG) and differential scanning calorimetry (DSC). In vitro RES-SLN skin permeation/retention assays were conducted, and their tyrosinase inhibitory activity was evaluated. An MTT reduction assay was performed on HaCat keratinocytes to determine in vitro cytotoxicity. The formulations had average diameter lower than 200 nm, the addition of SPC promoted increases in PdI in the RES-SLNs, but decreases PdI in the RES-free SLNs and the formulations exhibited zeta potentials smaller than -3 mV. The DSC analysis of the SLNs showed no endothermic peak attributable to RES. Microscopic analysis suggests that the materials formed had nanometric size distribution. Up to 45% of the RES permeated through the skin after 24 h. The RES-loaded SLNs were more effective than kojic acid at inhibiting tyrosinase and proved to be non-toxic in HaCat keratinocytes. The results suggest that the investigated RES-loaded SLNs have potential use in skin disorder therapies.2

    Development of nanotechnology-based drug delivery systems with olive vegetable oil for cutaneous application

    Get PDF
    Liquid-Crystalline Systems represent active compounds delivery systems that may be able to overcome the physical barrier of the skin, especially represented by the stratum corneum. To obtain these systems, aqueous and oily components are used with surfactants. Of the different association structures in such systems, the liquid-crystalline offer numerous advantages to a topical product. This manuscript presents the development of liquid-crystalline systems consisting, in which the oil component is olive oil, its rheological characterizations, and the location of liquid crystals in its phase map. Cytotoxic effects were evaluated using J-774 mouse macrophages as the cellular model. A phase diagram to mix three components with different proportions was constructed. Two liquid crystalline areas were found with olive oil in different regions in the ternary diagram with two nonionic surfactants, called SLC1 (S1) and SLC2 (S2). These systems showed lamellar liquid crystals that remained stable during the entire analysis time. The systems were also characterized rheologically with pseudoplastic behavior without thixotropy. The texture and bioadhesion assays showed that formulations were similar statistically (p < 0.05), indicating that the increased amount of water in S2 did not interfere with the bioadhesive properties of the systems. In vitro cytotoxic assays showed that formulations did not present cytotoxicity. Olive oil-based systems may be a promising platform for skin delivery of drugs.Os cristais líquidos representam um sistema de liberação de substâncias ativas capazes de vencer a barreira cutânea, representada especialmente pelo estrato córneo. Água, óleo e tensoativos são misturados para se obter esses sistemas. Diferentes estruturas podem ser formadas nesses sistemas, as quais oferecem muitas vantagens para os produtos de uso tópico. Esse trabalho visou ao desenvolvimento de sistemas líquido-cristalinos preparados com óleo de oliva, sua caracterização reológica e a identificação das fases cristalinas no diagrama ternário. Efeitos citotóxicos foram avaliados usando células de rato como modelo celular. Construiu-se um diagrama de fases que mistura três componentes em diferentes proporções. Duas áreas de cristal líquido, denominadas SLC1 (S1) e SLC2 (S2), foram encontradas com óleo de oliva em diferentes regiões no diagrama ternário preparado com dois diferentes tensoativos não-iônicos. Esses sistemas mostraram fase cristalina lamelar, que permaneceu estável durante o tempo estudado. Os sistemas foram também caracterizados reologicamente e apresentaram comportamento pseudoplástico com tixotropia. Os ensaios de textura e bioadesão mostraram que as formulações foram similares (p < 0.05), indicando que o aumento da quantidade de água em S2 não interferiu nas propriedades bioadesivas dos sistemas. Os ensaios de citotoxicidade mostraram que as formulações não foram citotóxicas. Sistemas à base de óleo de oliva são interessantes para a liberação de fármacos na pele

    PVP solid dispersions containing Poloxamer 407 or TPGS for the improvement of ursolic acid release

    Get PDF
    Solid dispersions (SDs) of ursolic acid (UA) were developed using polyvinylpyrrolidone K30 (PVP K30) in combination with non-ionic surfactants, such as D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) or poloxamer 407 (P407) with the aim of enhancing solubility and in vitro release of the UA. SDs were investigated using a 24&nbsp;full factorial design, subsequently the selected formulations were characterized for water solubility, X-ray diffractometry (XRD), differential scanning calorimetry (DSC), particle diameter, scanning electron microscopy, drug content, physical-chemical stability and in vitro release profile. SDs showed higher UA water-solubility than physical mixtures (PMs), which was attributed by transition of the drug from crystalline to amorphous or molecular state in the SDs, as indicated by XRD and DSC analyses. SD1 (with P407) and SD2 (with TPGS) were chosen for further investigation because they had higher drug load. SD1 proved to be more stable than SD2, revealing that P407 contributed to ensure the stability of the UA. Furthermore, SD1 and SD2 increased UA release by diffusion and swelling-controlled transport, following the Weibull model. Thus, solid dispersions obtained with PVP k-30 and P407 proved to be advantageous to enhance aqueous solubility and stability of UA
    corecore